These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dioxygen Activation on Cu-MOR Zeolite: Theoretical Insights into the Formation of Cu2O and Cu3O3 Active Species.
    Author: Mahyuddin MH, Tanaka T, Staykov A, Shiota Y, Yoshizawa K.
    Journal: Inorg Chem; 2018 Aug 20; 57(16):10146-10152. PubMed ID: 30091906.
    Abstract:
    The utilization of low-cost and abundant oxygen (O2) as an oxidant in the activation of copper-exchanged zeolites is highly important for the direct, selective oxidation of methane to methanol at low temperatures. While two motifs of active sites, i.e., the [Cu2(μ-O)]2+ and [Cu3(μ-O)3]2+, have been experimentally observed in mordenite (MOR) zeolite, the mechanisms of their formation from the reaction of Cu-MOR with O2 are still unclear. In this study, we performed density functional theory (DFT) calculations for O2 activation over 2[Cu2]2+-MOR and [Cu3O]2+-MOR zeolites. For the reaction on the dicopper species, we found two possible reaction routes: O-O bond cleavage leading to (1) formation of a [Cu2(μ-O)]2+ active species and a trans-μ-1,2-peroxo-Si2 species and (2) simultaneous formation of two [Cu2(μ-O)]2+ active species neighboring to each other. These routes are both exothermic but require completely different O-O bond activation energies. For the reaction on the tricopper species, we suggest a peroxo-Cu3O species as the intermediate structure with two transition states (TSs) involved in the reaction. The first TS where a significant rearrangement of the tricopper site occurs is found to be rate-determining, while the second TS where the peroxo bond is cleaved results in a smaller activation barrier. This reaction, in contrast to the dicopper case, is slightly endothermic. The present study provides theoretical insights that may help design of better Cu-exchanged zeolite catalysts for methane hydroxylation to methanol.
    [Abstract] [Full Text] [Related] [New Search]