These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison between optical coherence tomography angiography and immunolabeling for evaluation of laser-induced choroidal neovascularization.
    Author: Nakagawa K, Yamada H, Mori H, Toyama K, Takahashi K.
    Journal: PLoS One; 2018; 13(8):e0201958. PubMed ID: 30092067.
    Abstract:
    This study aimed to investigate the differences between images obtained by optical coherence tomography angiography (OCTA) with those from immunohistochemical labeling of laser-induced choroidal neovascularization (CNV) in a mouse model. CNV was induced by laser photocoagulation (GYC-2000, NIDEK; wavelength 532 nm) in the left eyes of 10 female C57BL/6J mice aged 6 weeks. The laser parameters included a 100-μm spot, 100-ms pulse duration and 200-mW incident power to rupture Bruch's membrane. OCT and OCTA CNV images were obtained using the RS-3000 Advance (NIDEK) 5 days post-laser photocoagulation. After OCTA imaging, the isolated choroid/retinal pigment epithelium complexes were fluorescently labeled with CD31 (an endothelial cell marker), platelet-derived growth factor receptor β (PDGFRβ, a pericyte-like scaffold marker), α-smooth muscle actin (α-SMA) and collagen I. Area measurements of the lesions obtained by enface OCTA were compared with immunolabeled CD31+ CNV lesions in choroid flat-mounts. We also examined structural correlations between the PDGFRβ+ pericyte-like scaffold and OCTA images. Laser-induced CNV was clearly detected by enface OCTA, appearing as a hyperflow lesion surrounded by a dark halo. Area measurements of the CNV lesion by immunolabeling were significantly larger than those obtained by enface OCTA (p = 0.006). The CNV lesion beneath the periphery of the pericyte-like scaffold was not clearly visible by enface OCTA due to the dark halo; however, the lesion was detectable as blood flow by cross-sectional OCTA and was also highly labeled by CD31. The periphery of the pericyte-like scaffold appeared to develop into subretinal fibrosis and this region was rich in myofibroblasts. Enface OCTA was unable to detect the entire area of laser-induced CNV in mice, with an undetectable portion located beneath the fibrotic periphery of the pericyte-like scaffold. Due to this OCTA fibrosis artifact, OCTA imaging has limited potential for accurately estimating CNV lesions.
    [Abstract] [Full Text] [Related] [New Search]