These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Production of d-xylonic acid using a non-recombinant Corynebacterium glutamicum strain. Author: Tenhaef N, Brüsseler C, Radek A, Hilmes R, Unrean P, Marienhagen J, Noack S. Journal: Bioresour Technol; 2018 Nov; 268():332-339. PubMed ID: 30092487. Abstract: It was found that Corynebacterium glutamicum ΔiolR devoid of the transcriptional regulator IolR accumulates high amounts of d-xylonate when cultivated in the presence of d-xylose. Detailed analyses of constructed deletion mutants revealed that the putative myo-inositol 2-dehydrogenase IolG also acts as d-xylose dehydrogenase and is mainly responsible for d-xylonate oxidation in this organism. Process development for d-xylonate production was initiated by cultivating C. glutamicum ΔiolR on defined d-xylose/d-glucose mixtures under batch and fed-batch conditions. The resulting yield matched the theoretical maximum of 1 mol mol-1 and high volumetric productivities of up to 4 g L-1 h-1 could be achieved. Subsequently, a novel one-pot sequential hydrolysis and fermentation process based on optimized medium containing hydrolyzed sugarcane bagasse was developed. Cost-efficiency and abundance of second-generation substrates, good performance indicators, and enhanced market access using a non-recombinant strain open the perspective for a commercially viable bioprocess for d-xylonate production in the near future.[Abstract] [Full Text] [Related] [New Search]