These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanical integrity of cement- and screw-retained zirconium-lithium silicate glass-ceramic crowns to Morse taper implants. Author: Vahey BR, Sordi MB, Stanley K, Magini RS, Novaes de Oliveira AP, Fredel MC, Henriques B, Souza JCM. Journal: J Prosthet Dent; 2018 Nov; 120(5):721-731. PubMed ID: 30093122. Abstract: STATEMENT OF PROBLEM: The improved esthetics of ceramic dental prostheses has increased their popularity, although their high elastic modulus and low fracture toughness and tensile strength may reduce the long-term performance of dental prostheses. PURPOSE: The purpose of this in vitro study was to assess the mechanical integrity of zirconium-lithium silicate glass-ceramic crowns cement- and screw-retained to a titanium implant-abutment after fatigue. MATERIAL AND METHODS: Forty titanium implants were placed in polyacetal to mimic bone support. Abutments were tightened to the implants to 20 Ncm by using a digital handheld torque meter. The implant abutment assemblies received a pressed maxillary premolar crown, either lithium disilicate (LD) or zirconium-lithium silicate glass-ceramic (LZS). The specimens (n=10) were subjected to fatigue at 200 N and 5 Hz for 500 000 cycles in a Ringer electrolytic solution (37°C). After fatigue, the crowns were removed to evaluate removal torque values on the implant-abutment connection. The remaining crown-implant-abutment assemblies were cross-sectioned at 90 degrees to the implant-abutment joint for inspection of cracks and the micro-gaps by scanning electron microscopy. RESULTS: Removal torque values before fatigue were recorded at 18 ±1.63 Ncm for the LD group and 18.2 ±0.81 Ncm for the LZS group. After fatigue, the removal torque values decreased significantly (12.8 ±1.6 Ncm for LD, 14.9 ±1.08 Ncm for LZS; P<.05). Micro-gaps at the implant-abutment connections were measured at 0.9 ±0.3 μm before fatigue and at 4.2 ±0.9 μm after fatigue. Cracks were detected at the crown adhesive or at the adhesive-abutment interface for both systems after fatigue. CONCLUSIONS: Cement- and screw-retained implant zirconium-lithium silicate glass-ceramic crowns revealed effective fatigue resistance on mean cyclic loading in an electrolyte solution. However, mechanical instability of the crown-adhesive-abutment interfaces and implant-abutment joints was detected after fatigue.[Abstract] [Full Text] [Related] [New Search]