These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen-independent killing by alveolar macrophages. Author: Catterall JR, Sharma SD, Remington JS. Journal: J Exp Med; 1986 May 01; 163(5):1113-31. PubMed ID: 3009680. Abstract: We have found that normal alveolar macrophages can kill an intracellular parasite by a mechanism that does not involve toxic metabolites of oxygen. We studied the interaction between Toxoplasma gondii and rat alveolar macrophages in vitro. We were interested in Toxoplasma because it causes pneumonia in immunosuppressed patients but not in healthy individuals, and we chose the rat because it resembles immunocompetent human subjects in being resistant to T. gondii. Resident rat alveolar macrophages could kill large numbers of T. gondii. This occurred without a respiratory burst as judged by intracellular reduction of nitroblue tetrazolium and quantitative release of superoxide. Furthermore, scavengers of toxic oxygen metabolites had no effect on the toxoplasmacidal activity of the alveolar macrophages, nor did prior exhaustion of their respiratory burst with PMA. Whereas acid pH (e.g., 4.5-6.0) rapidly kills extracellular T. gondii, raising of the intralysosomal acid pH of rat alveolar macrophages by incubating them with weak bases did not inhibit their ability to kill T. gondii. Killing of Toxoplasma occurred within 1 h of initial exposure to the alveolar macrophages. However, there was no evidence that killing preceded ingestion; Toxoplasma attached to the surface of the cell appeared viable, and when phagocytosis was blocked with sodium fluoride the organisms survived. These results indicate that rat alveolar macrophages possess a powerful nonoxidative microbicidal mechanism, which is distinct from acidification of the phagolysosome but which probably involves phagosome formation. This mechanism may be clinically relevant, for we have recently observed that human alveolar macrophages also kill T. gondii by an oxygen-independent process.[Abstract] [Full Text] [Related] [New Search]