These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: 1,25-Dihydroxyvitamin D3 attenuates disease severity and induces synoviocyte apoptosis in a concentration-dependent manner in rats with adjuvant-induced arthritis by inactivating the NF-κB signaling pathway.
    Author: Sun HQ, Yan D, Wang QN, Meng HZ, Zhang YY, Yin LX, Yan XF, Li SF.
    Journal: J Bone Miner Metab; 2019 May; 37(3):430-440. PubMed ID: 30097709.
    Abstract:
    An aggressive proliferation of synoviocytes is the hallmark of rheumatoid arthritis (RA). Emerging evidence shows that inhibiting the NF-κB signaling pathway with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] may be a therapeutic approach for controlling inflammatory diseases. In this study, we demonstrated the protective effects of three different 1,25(OH)2D3 concentration on adjuvant-induced arthritis (AA) rats through the NF-κB signaling pathway and their pro-apoptotic roles in cultured adjuvant-induced arthritis synoviocytes (AIASs). AA rats were prepared by injecting complete Freund's adjuvant and independently given daily intraperitoneal injection of 1,25(OH)2D3 at concentrations of 50, 100, and 300 ng/day/kg. Subsequently, AIASs were isolated from the inflamed joints of AA rats to test the effects of 1,25(OH)2D3 on AIASs in vitro. Intraperitoneal injection of 1,25-(OH)2D3 was found to induce a concentration- and time-dependent improvement in relieving the symptoms of AA. We found an increased paw withdrawal thermal latency (PWTL) in the affected paw of AA rats as the concentration of 1,25-(OH)2D3 increased. 1,25-(OH)2D3 treatment reduced levels of inflammatory factors in synovial tissues of AA rats. In the case of cultured AIASs, 1,25-(OH)2D3 was shown to inhibit cell proliferation and induce cell apoptosis in a concentration-dependent manner. Additionally, 1,25-(OH)2D3 inhibited the activation of the NF-κB signaling pathway. In conclusion, our study provides evidence emphasizing that 1,25(OH)2D3 has the potential to attenuate disease severity in RA potentially due to its contributory role in synoviocyte proliferation and apoptosis. The protective role of 1,25(OH)2D3 against RA depends on the NF-κB signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]