These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Investigating the Thermal Stability of Organic Thin-Film Transistors and Phototransistors Based on [1]-Benzothieno-[3,2-b]-[1]-benzothiophene Dimeric Derivatives. Author: He Y, Guo S, He Y, Murtaza I, Li A, Zeng X, Guo Y, Zhao Y, Chen X, Meng H. Journal: Chemistry; 2018 Nov 07; 24(62):16595-16602. PubMed ID: 30102437. Abstract: Two new highly thermally stable [1]benzothieno[3,2-b][1]benzothiophene (BTBT) dimeric derivatives, namely 1,4-bis([1]benzothieno[3,2-b][1]benzothiophene-2-yl)benzene (BTBT-Ph-BTBT) and 4,4'-bis([1]benzothieno[3,2-b][1]benzothiophene-2-yl)-1,1'-biphenyl (BTBT-DPh-BTBT), were synthesized by combining two simple fragment structures. Compared to the monomer compound 2-phenyl[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT, μmax =3.4×10-2 cm2 V-1 s-1 ), the organic thin-film transistors (OTFTs) based on BTBT-Ph-BTBT and BTBT-DPh-BTBT showed significantly higher mobility (up to 2.5 and 3.6 cm2 V-1 s-1 for BTBT-Ph-BTBT and BTBT-DPh-BTBT, respectively). The mobility of OTFTs based on BTBT-Ph-BTBT was kept at a high value (2.4×10-1 cm2 V-1 s-1 ) after the devices were thermally annealed at 350 °C. Furthermore, the organic phototransistors (OPTs) based on BTBT-Ph-BTBT and BTBT-DPh-BTBT displayed high photosensitivities in a range of 250-400 nm with a low intensity, making these materials potentially applicable for sensitive optoelectronic devices.[Abstract] [Full Text] [Related] [New Search]