These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CMV on surfaces in homes with young children: results of PCR and viral culture testing.
    Author: Amin MM, Stowell JD, Hendley W, Garcia P, Schmid DS, Cannon MJ, Dollard SC.
    Journal: BMC Infect Dis; 2018 Aug 13; 18(1):391. PubMed ID: 30103693.
    Abstract:
    BACKGROUND: Caring for young children is a known risk factor for cytomegalovirus (CMV) infection mainly through exposure to their saliva and urine. In a previous study, 36 CMV-seropositive children 2 mo. to 4 years old were categorized as CMV shedders (n = 23) or non-shedders (n = 13) based on detection of CMV DNA in their saliva and urine. The current study evaluated the presence of CMV on surfaces in homes of the children. METHODS: Study staff made 4 visits to homes of the 36 enrolled children over 100 days. Saliva was collected by swabbing the mouth and urine was collected on filter paper inserted into diapers. In addition, five surface specimens were collected: three in contact with children's saliva (spoon, child's cheek, washcloth) and two in contact with children's urine (diaper changing table, mother's hand). Samples were tested by PCR and viral culture to quantify the presence of CMV DNA and viable virus. RESULTS: A total of 654 surface samples from 36 homes were tested; 136 were CMV DNA positive, 122 of which (90%) were in homes of the children shedding CMV (p < 0.001). Saliva-associated samples were more often CMV positive with higher viral loads than urine-associated samples. The higher the CMV viral load of the child in the home, the more home surfaces that were PCR positive (p = 0.01) and viral culture positive (p = 0.05). CONCLUSIONS: The main source for CMV on surfaces in homes was saliva from the child in the home. Higher CMV viral loads shed by children correlated with more viable virus on surfaces which could potentially contribute to viral transmission.
    [Abstract] [Full Text] [Related] [New Search]