These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oxygen isotopes in tree rings are less sensitive to changes in tree size and relative canopy position than carbon isotopes. Author: Klesse S, Weigt R, Treydte K, Saurer M, Schmid L, Siegwolf RTW, Frank DC. Journal: Plant Cell Environ; 2018 Dec; 41(12):2899-2914. PubMed ID: 30107635. Abstract: Stable isotope ratios in tree rings have become an important proxy for palaeoclimatology, particularly in temperate regions. Yet temperate forests are often characterized by heterogeneous stand structures, and the effects of stand dynamics on carbon (δ13 C) and oxygen isotope ratios (δ18 O) in tree rings are not well explored. In this study, we investigated long-term trends and offsets in δ18 O and δ13 C of Picea abies and Fagus sylvatica in relation to tree age, size, and distance to the upper canopy at seven temperate sites across Europe. We observed strong positive trends in δ13 C that are best explained by the reconstructed dynamics of individual trees below the upper canopy, highlighting the influence of light attenuation on δ13 C in shade-tolerant species. We also detected positive trends in δ18 O with increasing tree size. However, the observed slopes are less steep and consistent between trees of different ages and thus can be more easily addressed. We recommend restricting the use of δ13 C to years when trees are in a dominant canopy position to infer long-term climate signals in δ13 C when relying on material from shade-tolerant species, such as beech and spruce. For such species, δ18 O should be in principle the superior proxy for climate reconstructions.[Abstract] [Full Text] [Related] [New Search]