These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of Fill Volume and Humidification on Aerosol Delivery During Single-Limb Noninvasive Ventilation.
    Author: Saeed H, Mohsen M, Salah Eldin A, Elberry AA, Hussein RR, Rabea H, Abdelrahim ME.
    Journal: Respir Care; 2018 Nov; 63(11):1370-1378. PubMed ID: 30108135.
    Abstract:
    BACKGROUND: The aim of this work was to determine the effect of fill volume and humidification change on aerosol delivery during single-limb noninvasive ventilation (NIV). METHODS: Four groups were recruited, each consisting of 12 subjects (6 females) with COPD receiving NIV. Groups 1 and 3 received inhaled salbutamol with a vibrating mesh nebulizer, and Groups 2 and 4 received inhaled salbutamol with a jet nebulizer. The in vivo study was carried out on days 1 and 3. In groups 1 and 2, 2 fill-volumes were delivered to each subject; 1 mL 5,000 μg/mL salbutamol respirable solution used as it is or diluted to a total of 2 mL using normal saline. In groups 3 and 4, 1 mL 5,000 μg/mL salbutamol respirable solution diluted to 2 mL total volume using normal saline was delivered to each subject with and without humidification. Unchanged salbutamol in urine at 30 min (USAL0.5) and in pooled urine at 24 h (USAL24) was determined. On day 2, the ex vivo study was carried out on subjects using the same experimental setting with a filter placed proximal to their face mask for collection of total inhaled dose of salbutamol (aerosol emitted). RESULTS: The vibrating mesh nebulizer delivered higher USAL0.5, USAL24, and aerosol emitted compared to the jet nebulizer at all fill volumes and humidification conditions (P < .001). Increasing fill volume from 1 mL to 2 mL resulted in a significant increase in USAL0.5, USAL24, and aerosol emitted from the jet nebulizer (P < .05) with an insignificant effect on the vibrating mesh nebulizer. A 2-mL fill volume with the jet nebulizer delivered USAL24 and aerosol emitted comparable to those of 1 mL with the vibrating mesh nebulizer with significantly longer nebulization times (P < .001). Humidification had an insignificant effect on aerosol delivery. CONCLUSIONS: Increasing the fill volume of a jet nebulizer is essential to increase the amount of inhaled medication reaching a subject. In contrast, there is no need to increase fill volumes when using a vibrating mesh nebulizer. There is no need to switch off the humidifier while delivering aerosol through a single-limb NIV circuit.
    [Abstract] [Full Text] [Related] [New Search]