These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential composition of cytosol 5'-nucleotidases between T and B lymphoblasts.
    Author: Iizasa T, Takeuchi F, Honda Z, Nishida Y, Kamatani N, Miyamoto T.
    Journal: Biochim Biophys Acta; 1986 Jun 19; 882(2):228-33. PubMed ID: 3011114.
    Abstract:
    WI-L2 cells (a B-lymphoblastoid cell line) were more resistant than CEM cells (a T-lymphoblastoid cell line) to deoxyadenosine, ara-A (9-beta-D-arabinofuranosyladenine), or ara-C (1-beta-D-arabinofuranosylcytosine) inhibition. This was caused by a difference in the composition of cytosol 5'-nucleotidases between WI-L2 and CEM cells. In intact cells, the endogenous production of deoxyadenosine from WI-L2 cells deficient in adenosine kinase (EC 2.7.1.20) and deoxycytidine kinase (EC 2.7.1.74) was consistently high, despite changes in endogenous adenosine production. Endogenous production of deoxyadenosine from CEM cells deficient in adenosine kinase and deoxycytidine kinase was, however, coordinated with endogenous adenosine production. In broken cells, cytosol dAMPase (2'-deoxyadenosine 5'-monophosphate 5'-nucleotidase) activity of WI-L2 cells was 3-5-fold higher than that of CEM cells. dAMPase activity could be separated from ATP-activated IMPase (inosine 5'-monophosphate 5'-nucleotidase) by gel filtration (molecular weight: dAMPase; 39,000-46,000; ATP-activated IMPase, greater than 150,000). Cytosol ATP-activated IMPase and dAMPase were isolated by phosphocellulose or DEAE-Bio-Gel A chromatography from non-specific phosphatases. The ATP-activated IMPase showed only marginal activity towards dAMP (2'-deoxyadenosine 5'-monophosphate), ara-AMP (9-beta-D-arabinofuranosyladenine 5'-monophosphate), or ara-CMP (cytosine-beta-D-arabinofuranoside 5'-monophosphate), even in the presence of ATP. The activity of ATP-activated IMPase was similar in WI-L2 and CEM cells. dAMPase was separated into two peaks by DEAE-Bio-Gel A chromatography; one of these peaks degraded ara-AMP and ara-CMP. The activities of both peaks from WI-L2 cells were higher than those from CEM cells. These results show that the degradation of dAMP, ara-AMP or ara-CMP was more specific and rapid in WI-L2 than in CEM cells.
    [Abstract] [Full Text] [Related] [New Search]