These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The influence of pH and membrane potential on passive Na+ and K+ fluxes in human red blood cells.
    Author: Chipperfield AR, Shennan DB.
    Journal: Biochim Biophys Acta; 1986 May 29; 886(3):373-82. PubMed ID: 3011118.
    Abstract:
    Passive (ouabain-insensitive) Na+ and K+ effluxes from human red blood cells were measured over the range pHo 6.2-8.5. On raising pHo, Na+ efflux increased and this was mainly attributable to the piretanide-sensitive component: K+ efflux likewise but attributable to both piretanide-sensitive and piretanide-insensitive components. On replacing Cl- with non-penetrating anions (mainly gluconate), Na+ and K+ effluxes increased, mostly attributable to the piretanide-insensitive components. On restoring pHi either by reducing pHo or by applying DIDS, the influence of pHo on Na+ and K+ effluxes was diminished. These results suggest that pHi rather than Em is the dominant influence. Passive Na+ and K+ effluxes and influxes in the presence of bumetanide were tested fro conformity to the Ussing independence relationship. For K+, the calculated and observed ratios agreed, indicating that the sodium pump, 'cotransport' and leak wholly account for K+ fluxes in human red blood cells. For Na+, the ratios did not agree and a 1:1 Na+/Na+ exchange did not account for the discrepancy. Pathways for Na+ appear to be more numerous than for K+.
    [Abstract] [Full Text] [Related] [New Search]