These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Transport enhancement and reversal: glucose and 3-O-methyl glucose. Author: Musliner TA, Chrousos GP, Amos H. Journal: J Cell Physiol; 1977 May; 91(2):155-68. PubMed ID: 301142. Abstract: In chick embryo fibroblast cultures the 15- to 30-fold enhancement of D-glucose uptake observed when cells are starved of glucose for 24 hours is not duplicated for derivatives of glucose that compete effectively for uptake and have generally been considered to use the same carrier. 2-deoxy-D-glucose, D-mannose, D-galactose and D-glucosamine are derepressed progressively less sharply in that order with glucosamine uptake never more than doubled by starvation. D-glucose at a concentration of 5.5 mM in the 24-hour conditioning medium is a strong "repressor" resulting in low "transport" behavior for each of the five sugars cited. D-glucosamine is equally effective at the same concentration. A 10-fold reduction in the concentration of glucosamine (0.55 mM) allows for the escape from repression of mannose, glucose, and deoxyglucose uptake while the others remain repressed. Mannose uptake escapes as well when the glucose concentration in the "conditioning" medium is similarly reduced. Under certain conditions of starvation and cell density dramatic effects of supplemental stimulation by insulin can be achieved. Insulin withdrawal interrupts the supplemental stimulation process. Cycloheximide, actinomycin D and cordycepin block both non-insulin and insulin-induced derepression. Short exposure (15-30 minutes) of 24-hour starved cells to glucose (5.5 mM) reduces glucose sharply but does not affect 3-O-methyl glucose uptake. If the exposure is to 2-deoxyglucose (5.5 mM) further derepression of glucose uptake results.[Abstract] [Full Text] [Related] [New Search]