These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Impact of Mitochondrion-Targeting Group on the Reactivity and Cytostatic Pathway of Platinum(IV) Complexes.
    Author: Jin S, Hao Y, Zhu Z, Muhammad N, Zhang Z, Wang K, Guo Y, Guo Z, Wang X.
    Journal: Inorg Chem; 2018 Sep 04; 57(17):11135-11145. PubMed ID: 30117731.
    Abstract:
    Platinum(IV) complexes are prodrugs of cisplatin with multiple potential advantages over platinum(II) drugs. Mitochondria play pivotal roles in producing energy and inducing death of cancer cells. Two platinum(IV) complexes, namely, c,c,t-[Pt(NH3)2Cl2(OH)(OCOCH2CH2CH2CH2PPh3)]Br and c,c,t-[Pt(NH3)2Cl2(OCOCH2CH2CH2CH2PPh3)2]Br2, were designed to explore the effect of mitochondrion-targeting group(s) on the bioactivity and cytotoxicity of platinum(IV) complexes. The complexes were characterized by electrospray ionization mass spectrometry, reverse-phase high-performance liquid chromatography, and multinuclear (1H, 13C, 31P, and 195Pt) NMR spectroscopy. The introduction of triphenylphosphonium targeting group(s) markedly influences the reactivity and cytotoxicity of the Pt(IV) complexes. The targeted complex displays more potent disruptive effect on mitochondria but less inhibitory effect on cancer cells than cisplatin. The lipophilicity of the Pt(IV) complexes is enhanced by the targeting group(s), while their reactivity to DNA is decreased. As a result, the mitochondrial morphology and adenosine triphosphate producing ability are impaired, which constitutes an alternative pathway to inhibit cancer cells. This study shows that both the reactivity of platinum(IV) center and the property of axial targeting ligand exert influences on the cytotoxicity of targeted Pt(IV) complexes. For targeting groups with pharmacological activities, their intrinsic function could enrich the anticancer mechanism of Pt(IV) complexes.
    [Abstract] [Full Text] [Related] [New Search]