These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Emissions, Transport, and Fate of Emerging Per- and Polyfluoroalkyl Substances from One of the Major Fluoropolymer Manufacturing Facilities in China.
    Author: Song X, Vestergren R, Shi Y, Huang J, Cai Y.
    Journal: Environ Sci Technol; 2018 Sep 04; 52(17):9694-9703. PubMed ID: 30118215.
    Abstract:
    Fluoropolymer manufacturing is a major historical source of perfluorooctanoic acid (PFOA) on a global scale, but little is known about the emissions, transport, and fate of emerging per- and polyfluoroalkyl substances (PFASs). Here, we performed a comprehensive spatial trend and interyear comparison of surface water and sediment samples from the Xiaoqing River, which receives water discharge from one of the major fluoropolymer manufacturing facilities in China. A suspect screening identified 42 chemical formulas, including the tetramer acid of hexafluoropropylene oxide (HFPO-TeA) and numerous tentatively detected isomers of C9-C14 per- or polyfluoroalkyl ether carboxylic acids (PFECAs). As revealed by the spatial trends and peak area-based sediment-water distribution coefficients, emerging PFASs with 3-9 perfluorinated carbons were transported unimpededly with the bulk water flow having no measurable degradation. Emerging PFASs with >9 perfluorinated carbons displayed more rapidly decreasing spatial trends than shorter-chain homologues in surface water due to increasing sedimentation rates. The presence of HFPO oligomers, monoether PFECAs, monohydrogen-substituted perfluoroalkyl carboxylic acids (PFCAs) and monochlorine-substituted PFCAs could partly be explained by the active use of polymerization aids or the impurities therein. However, further research is encouraged to better characterize the emissions of low-molecular-weight PFASs from fluoropolymers throughout their life-cycle.
    [Abstract] [Full Text] [Related] [New Search]