These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycogen synthesis and immunocytochemical study of fructose-1,6-biphosphatase in methionine sulfoximine epileptogenic rodent brain.
    Author: Hevor TK, Delorme P, Beauvillain JC.
    Journal: J Cereb Blood Flow Metab; 1986 Jun; 6(3):292-7. PubMed ID: 3011827.
    Abstract:
    The effects of the convulsant methionine sulfoximine (MSO) on the glucose pathway have been investigated in mouse and rat brain. The key gluconeogenic enzyme fructose-1,6-biphosphatase (FBPase) (EC 3.1.3.11) was immunostained by rat anti-FBPase antibody. The rat cortex slices were very lightly stained, almost unstained in controls. After MSO injection, there was a marked staining only in astrocytes (perikarya, processes, and end feet). The activity of this enzyme also increased. MSO induced an increase of 63% in the stability at heating (47 degrees C) and of 36% in the stability at proteolysis (trypsin, 10 micrograms/ml) of FBPase. The convulsant had no effect on the concentrations of the metabolites related to the FBPase-phosphofructokinase step, i.e., fructose-1,6-biphosphate, glyceraldehyde-3-phosphate, and dihydroxyacetone phosphate, before, during, or after the convulsions. These results show that the cellular site of glucose pathway impairment induced by MSO in rodent brain is presumably the astroglial cells and that one mechanism of glycogenesis could be the reinforcement of the molecules of FBPase, which enhances gluconeogenesis. A hypothetical diagram of glucose metabolism under the effect of MSO has been proposed.
    [Abstract] [Full Text] [Related] [New Search]