These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondria-targeting BODIPY-loaded micelles as novel class of photosensitizer for photodynamic therapy. Author: Li M, Li X, Cao Z, Wu Y, Chen JA, Gao J, Wang Z, Guo W, Gu X. Journal: Eur J Med Chem; 2018 Sep 05; 157():599-609. PubMed ID: 30125721. Abstract: In this paper, a series of novel BODIPY-based photosensitizers have been designed and synthesized for photodynamic therapy. BODIPY3 was screened out as the most potential photosensitizer due to its excellent optical properties, high singlet oxygen efficiency and good photostability. However, as an organic photosensitizer, BODIPY3 still suffered from the drawbacks of insolubility and instability in aqueous system. In view of these problems, DSPE-PEG2000 was used to trap BODIPY3 into the hydrophobic core of micelles to obtain well-dispersing nano complexes BODIPY3-PEG3 in aqueous system. More importantly, BODIPY3-PEG3 not only has better solubility and stability in aqueous media but can generate significant singlet oxygen (1O2, one of the reactive oxygen species, the real cytotoxic agent in photodynamic therapy) in living cells and exhibit high light cytotoxicity to three cancer cell lines. The mechanism studies indicated the mitochondrial localization of BODIPY3-PEG3 was able to generate ROS in mitochondria, which further result in mitochondrial dysfunction and photoinduced apoptosis via caspase-8 and caspase-3 pathway.[Abstract] [Full Text] [Related] [New Search]