These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tubeimoside-1 inhibits the proliferation and metastasis by promoting miR-126-5p expression in non-small cell lung cancer cells. Author: Shi H, Bi H, Sun X, Dong H, Jiang Y, Mu H, Li W, Liu G, Gao R, Su J. Journal: Oncol Lett; 2018 Sep; 16(3):3126-3134. PubMed ID: 30127904. Abstract: Tubeimoside-1 (TBMS1) possesses broad anticancer activities, including the cytostatic and anti-angiogenesis effects in lung cancer. However, the effect of TBMS1 on the metastasis of non-small cell lung cancer (NSCLC) cells and the potential underlying mechanism remain unclear. In the present study, a cell counting kit-8 assay revealed that TBMS1 suppressed the proliferation of NCI-H1299 cells significantly, particularly following 48 h of treatment. Further studies showed that TBMS1 notably enhanced the apoptosis, and inhibited the migration and invasion of NCI-H1299 cells upon treatment for 48 h. A total of 14 NSCLC tissues and 14 normal adjacent tissues were collected, reverse transcription-quantitative polymerase chain reaction revealed decreased expression of microRNA (miR)-126-5p in NSCLC tissues compared with adjacent NSCLC tissues, which was reversed following TBMS1 administration in NCI-H1299 cells. The overexpression of miR-126-5p induced by TBMS1 was demonstrated to target and downregulate vascular endothelial growth factor (VEGF)-A. Simultaneously, the expression of VEGF-R2 was reduced notably, along with a significant declined in the phosphorylation levels of dual specificity mitogen-activated protein kinase kinase 1 and extracellular signal-regulated kinase (ERK)1/2. Overall, the aforementioned results indicated that TBMS1 inhibited the proliferation and metastasis, and promoted the apoptosis of NCI-H1299 cells, which may be mediated by overexpressing miR-126-5p, which inactivates the VEGF-A/VEGFR2/ERK signaling pathway. Therefore, TBMS1 may be a promising drug for prevention and treatment of NSCLC.[Abstract] [Full Text] [Related] [New Search]