These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gluconate accumulation and enzyme activities with extremely nitrogen-limited surface cultures of Aspergillus niger. Author: Müller HM. Journal: Arch Microbiol; 1986 Mar; 144(2):151-7. PubMed ID: 3013115. Abstract: Batch cultures of Aspergillus niger grown from conidia on a medium with high C/N ratio accumulated gluconate from glucose with a yield of 57%. During almost the whole time of accumulation there was no net synthesis of total protein in the mycelium but the activity per flask and the specific activity of glucose oxidase (EC 1.1.3.4) in mycelial extracts increased whereas both values decreased for glucose dehydrogenase (EC 1.1.99.10) 'gluconate 6-phosphatase' (cf. EC 3.1.3.1, 3.1.3.2), gluconokinase (EC 2.7.1.12), glucose 6-phosphate and phosphogluconate dehydrogenases (EC 1.1.1.49, EC 1.1.1.44), phosphoglucomutase (EC 2.7.5.1), and most enzymes of the Embden-Meyerhof pathway and the tricarboxylic acid cycle. Gluconate dehydratase (EC 4.2.1.39), gluconate dehydrogenase (EC 1.1.99.3) and enzymes of the Entner-Doudoroff pathway could not be detected. By cycloheximide the increase of glucose oxidase activity was inhibited. It is concluded that the high yield of gluconate was due mainly to the net (de novo) synthesis of glucose oxidase which occurred during protein turnover after the exhaustion of the nitrogen source, and which was not accompanied by a net synthesis of the other enzymes investigated. Some gluconate may also have been formed by hydrolytic cleavage of gluconate 6-phosphate.[Abstract] [Full Text] [Related] [New Search]