These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase.
    Author: Matsushita K, Kaback HR.
    Journal: Biochemistry; 1986 May 06; 25(9):2321-7. PubMed ID: 3013300.
    Abstract:
    The respiratory chain in the cytochrome d deficient mutant Escherichia coli GR19N is a relatively simple, linear system consisting of primary dehydrogenases, ubiquinone 8, cytochrome b-556, and cytochrome o oxidase. By use of right-side-out and inside-out membrane vesicles from this strain, various oxidase activities and the generation of the H+ electrochemical gradient were studied. Oxidation of ubiquinol 1 or N,N,-N',N'-tetramethyl-p-phenylenediamine, which donate electrons directly to the terminal oxidase, generates a H+ electrochemical gradient comparable to that observed during D-lactate oxidation. In contrast, D-lactate/ubiquinone 1 or D-lactate/ferricyanide oxidoreductase activity does not appear to generate a membrane potential, suggesting that electron flow from D-lactate dehydrogenase to ubiquinone is not electrogenic. Moreover, proteoliposomes reconstituted with purified D-lactate dehydrogenase, ubiquinone 8, and purified cytochrome o catalyze D-lactate and ubiquinol 1 oxidation and generate a H+ electrochemical gradient similar to that observed in membrane vesicles. Strikingly, in inside-out vesicles, NADH oxidation generates a H+ electrochemical gradient that is very significantly greater than that produced by either D-lactate or ubiquinol 1; furthermore, NADH/ubiquinone 1 and NADH/ferricyanide oxidoreductase activities are electrogenic. It is suggested that the only component between D-lactate dehydrogenase or ubiquinol and oxygen in GR19N membranes that is directly involved in the generation of the H+ electrochemical gradient is cytochrome o, which functions as a "half-loop" (i.e., the oxidase catalyzes the scalar release of 2 H+ from ubiquinol on the outer surface of the membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]