These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Light- and nucleotide-dependent binding of phosphodiesterase to rod disk membranes: correlation with light-scattering changes and vesicle aggregation.
    Author: Caretta A, Stein PJ.
    Journal: Biochemistry; 1986 May 06; 25(9):2335-41. PubMed ID: 3013302.
    Abstract:
    Under conditions in which large guanosine cyclic 3',5'-phosphate (cGMP)- and phosphodiesterase (PDE)-dependent changes in near-infrared transmission and vesicle aggregation and disaggregation occur, we have observed a striking change in the binding of PDE to rod disk membranes. The change in PDE binding is nucleotide and light dependent as are the light-scattering changes. The cGMP- and PDE-dependent light-scattering signal can be produced by a 500-nm light flash which bleaches 1/(1 X 10(7] rhodopsin molecules. Mg ions are an essential cofactor for the nucleotide-dependent PDE binding and light-scattering changes. 3-Isobutyl-1-methylxanthine and other competitive inhibitors of PDE hydrolytic activity support increased PDE binding to the disk membrane, vesicle aggregation, and the light-scattering signal. However, treatments which block GTP-dependent activation of PDE hydrolytic activity (colchicine, GDP, or ethylenediaminetetraacetic acid) also block these phenomena. Thus, GTP-dependent activation of PDE rather than its hydrolytic activity appears to be correlated with the light-scattering signal.
    [Abstract] [Full Text] [Related] [New Search]