These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters. Author: Fijani E, Barzegar R, Deo R, Tziritis E, Skordas K. Journal: Sci Total Environ; 2019 Jan 15; 648():839-853. PubMed ID: 30138884. Abstract: Accurate prediction of water quality parameters plays a crucial and decisive role in environmental monitoring, ecological systems sustainability, human health, aquaculture and improved agricultural practices. In this study a new hybrid two-layer decomposition model based on the complete ensemble empirical mode decomposition algorithm with adaptive noise (CEEMDAN) and the variational mode decomposition (VMD) algorithm coupled with extreme learning machines (ELM) and also least square support vector machine (LSSVM) was designed to support real-time environmental monitoring of water quality parameters, i.e. chlorophyll-a (Chl-a) and dissolved oxygen (DO) in a Lake reservoir. Daily measurements of Chl-a and DO for June 2012-May 2013 were employed where the partial autocorrelation function was applied to screen the relevant inputs for the model construction. The variables were then split into training, validation and testing subsets where the first stage of the model testing captured the superiority of the ELM over the LSSVM algorithm. To improve these standalone predictive models, a second stage implemented a two-layer decomposition with the model inputs decomposed in the form of high and low frequency oscillations, represented by the intrinsic mode function (IMF) through the CEEMDAN algorithm. The highest frequency component, IMF1 was further decomposed with the VMD algorithm to segregate key model input features, leading to a two-layer hybrid VMD-CEEMDAN model. The VMD-CEEMDAN-ELM model was able to reduce the root mean square and the mean absolute error by about 14.04% and 7.12% for the Chl-a estimation and about 5.33% and 4.30% for the DO estimation, respectively, compared with the standalone counterparts. Overall, the developed methodology demonstrates the robustness of the two-phase VMD-CEEMDAN-ELM model in identifying and analyzing critical water quality parameters with a limited set of model construction data over daily horizons, and thus, to actively support environmental monitoring tasks, especially in case of high-frequency, and relatively complex, real-time datasets.[Abstract] [Full Text] [Related] [New Search]