These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MicroRNA-135a-3p is downregulated and serves as a tumour suppressor in ovarian cancer by targeting CCR2. Author: Duan S, Dong X, Hai J, Jiang J, Wang W, Yang J, Zhang W, Chen C. Journal: Biomed Pharmacother; 2018 Nov; 107():712-720. PubMed ID: 30138893. Abstract: MicroRNAs have been demonstrated to play a crucial role in the development of ovarian cancer. Many studies prove that forms of miR-135a, including miR-135a-5p and miR-135a-3p, serve as tumour suppressors in multiple cancers. Nevertheless, the precise function of miR-135a-3p and the molecular mechanisms underlying the involvement of miR-135a-3p in ovarian carcinoma cell growth and metastasis remain largely unknown. Herein, we report that miR-135a-3p expression was significantly downregulated in ovarian carcinoma tissues compared with corresponding adjacent non-tumour tissues. Ectopic miR-135a-3p expression inhibited ovarian carcinoma cell proliferation, migration and invasion in vitro. Additionally, the overexpression of miR-135a-3p inhibited epithelial-mesenchymal transition (EMT) in ovarian cancer cells. A luciferase reporter assay confirmed that the C-C chemokine receptor type 2 (CCR2) gene was the target of miR-135a-3p. In addition, CCR2 depletion mimicked the inhibitory effects of miR-135a-3p on ovarian cancer cells in vitro. Rescue experiments using CCR2 overexpression further verified that CCR2 was a functional target of miR-135a-3p. Xenograft model assays demonstrated that miR-135a-3p functions as an anti-oncogene by targeting CCR2 in vivo. Taken together, these data prove that miR-135a-3p serves as a tumour suppressor gene in ovarian cancer by regulating CCR2.[Abstract] [Full Text] [Related] [New Search]