These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Author: Jaber LR. Journal: Planta; 2018 Dec; 248(6):1525-1535. PubMed ID: 30140979. Abstract: Fungal entomopathogens, Beauveria bassiana (NATURALIS) and Metarhizium brunneum (BIPESCO5), can promote the growth of wheat following their endophytic establishment within plants through seed treatment. Similar to endophytic B. bassiana which has already been reported as a disease antagonist by several previous studies, the present study demonstrates that M. brunneum can suppress disease pathogens following plant colonization as well. An upsurge of research hints at the ability of entomopathogenic fungi, almost exclusively considered and used as insect pathogens, to endophytically colonize the internal tissues of a wide array of host plants and subsequently confer numerous benefits including enhancement of plant growth and suppression of disease pathogens. Such an ability has mainly been investigated for Beauveria bassiana. Fewer studies have demonstrated plant growth promotion by Metarhizium brunneum colonization, whereas no studies have reported on the potential of endophytic M. brunneum as a plant disease antagonist. The present study was, therefore, conducted to investigate whether seed treatment with B. bassiana (NATURALIS) and M. brunneum (BIPESCO5) could result in their endophytic establishment in wheat and promote plant growth. The study further examines the effect of the fungal strains as endophytes against Fusarium culmorum, one of the main causal agents of crown and root rot (CRR) in wheat. Both B. bassiana and M. brunneum were able to systemically colonize roots and shoots of wheat, and promote several plant growth parameters (shoot height, root length, and fresh root and shoot weights). Moreover, endophytic colonization of wheat with either fungal entomopathogen resulted in a significant reduction in disease incidence, development and severity. These results support the notion of the multiple ecological roles that could further be played by entomopathogenic fungi. Bearing such additional roles in mind while developing these fungi as microbial agents could improve the value of many commercially available mycoinsecticides.[Abstract] [Full Text] [Related] [New Search]