These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: MicroRNA-504 functions as a tumor suppressor in hepatocellular carcinoma through inhibiting Frizzled-7-mediated-Wnt/β-catenin signaling.
    Author: Quan H, Li B, Yang J.
    Journal: Biomed Pharmacother; 2018 Nov; 107():754-762. PubMed ID: 30142536.
    Abstract:
    Accumulating evidence suggests that microRNAs (miRNAs) are critical regulators in the development and progression of various malignant tumors, including hepatocellular carcinoma (HCC). Multiple findings have indicated that miRNA-504 (miR-504) is dysregulated in several types of cancers, functioning as an oncogenic miRNA or a tumor suppressive miRNA. However, the role of miR-504 in HCC remains unknown. In this study, we aimed to detect the expression pattern of miR-504 in HCC tissues and cell lines and investigate the precise biological function in HCC cells. Our results showed that miR-504 expression levels were frequently downregulated in both HCC tissues and cell lines. Gain-of-function experiments demonstrated that miR-504 overexpression inhibited the proliferation and invasion in HCC cell lines. By contrast, miR-504 inhibition had the opposite effect. Interestingly, bioinformatics analysis predicted that Frizzled-7 (FZD7) was a potential target gene of miR-504. Dual-luciferase reporter assays confirmed that miR-504 directly targeted the 3'-untranslated region of FZD7 mRNA. In addition, our results showed that miR-504 negatively regulated the mRNA and protein expression of FZD7 in HCC cell lines. Moreover, miR-540 overexpression inhibited the cellular expression of β-catenin and blocked the activation of Wnt signaling in HCC cells. Notably, restoration of FZD7 expression significantly reversed the inhibitory effect of miR-504 on proliferation, invasion, and Wnt/β-catenin signaling in HCC cells. In conclusion, our results demonstrate that miR-504 functions as a tumor suppressive miRNA that inhibits the proliferation and invasion of HCC cells by targeting FZD7 and inhibiting Wnt/β-catenin signaling. Our study provides evidence that miR-504-meidated FZD7/Wnt/β-catenin signaling pathway plays an important role in HCC development and progression and suggests miR-504 as a novel future therapeutic target for treatment of HCC.
    [Abstract] [Full Text] [Related] [New Search]