These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vanishing quantum oscillations in Dirac semimetal ZrTe5.
    Author: Wang J, Niu J, Yan B, Li X, Bi R, Yao Y, Yu D, Wu X.
    Journal: Proc Natl Acad Sci U S A; 2018 Sep 11; 115(37):9145-9150. PubMed ID: 30150389.
    Abstract:
    One of the characteristics of topological materials is their nontrivial Berry phase. Experimental determination of this phase largely relies on a phase analysis of quantum oscillations. We study the angular dependence of the oscillations in a Dirac material [Formula: see text] and observe a striking spin-zero effect (i.e., vanishing oscillations accompanied with a phase inversion). This indicates that the Berry phase in [Formula: see text] remains nontrivial for arbitrary field direction, in contrast with previous reports. The Zeeman splitting is found to be proportional to the magnetic field based on the condition for the spin-zero effect in a Dirac band. Moreover, it is suggested that the Dirac band in [Formula: see text] is likely transformed into a line node other than Weyl points for the field directions at which the spin zero occurs. The results underline a largely overlooked spin factor when determining the Berry phase from quantum oscillations.
    [Abstract] [Full Text] [Related] [New Search]