These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Double-Morphology CoS2 Anchored on N-Doped Multichannel Carbon Nanofibers as High-Performance Anode Materials for Na-Ion Batteries. Author: Pan Y, Cheng X, Gong L, Shi L, Zhou T, Deng Y, Zhang H. Journal: ACS Appl Mater Interfaces; 2018 Sep 19; 10(37):31441-31451. PubMed ID: 30153409. Abstract: Na-ion batteries (NIBs) have attracted increasing attention given the fact that sodium is relatively more plentiful and affordable than lithium for sustainable and large-scale energy storage systems. However, the shortage of electrode materials with outstanding comprehensive properties has limited the practical implementations of NIBs. Among all the discovered anode materials, transition-metal sulfide has been proven as one of the most competitive and promising ones due to its excellent redox reversibility and relatively high theoretical capacity. In this study, double-morphology N-doped CoS2/multichannel carbon nanofibers composites (CoS2/MCNFs) are precisely designed, which overcome common issues such as the poor cycling life and inferior rate performance of CoS2 electrodes. The conductive 3D interconnected multichannel nanostructure of CoS2/MCNFs provides efficient buffer zones for the release of mechanical stresses from Na+ ions intercalation/deintercalation. The synergy of the diverse structural features enables a robust frame and a rapid electrochemical reaction in CoS2/MCNFs anode, resulting in an impressive long-term cycling life of 900 cycles with a capacity of 620 mAh g-1 at 1 A g-1 (86.4% theoretical capacity) and a surprisingly high-power output. The proposed design in this study provides a rational and novel thought for fabricating electrode materials.[Abstract] [Full Text] [Related] [New Search]