These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria. Author: Carrillo Y, Dijkstra F, LeCain D, Blumenthal D, Pendall E. Journal: Ecol Lett; 2018 Nov; 21(11):1639-1648. PubMed ID: 30160010. Abstract: Accurate predictions of soil C feedbacks to climate change depend on an improved understanding of responses of soil C pools and C use by soil microbial groups. We assessed soil and microbial C in a 7-year manipulation of CO2 and warming in a semi-arid grassland. Continuous field isotopic labelling under elevated CO2 further allowed us to study the dynamics of the existing C (Old C) in soil and microbes as affected by warming. Warming reduced soil C under elevated CO2 but had no impact under ambient CO2 . Loss of soil C under warming and elevated CO2 was attributed to increased proportional loss of Old C. Warming also reduced the proportion of Old C in microbes, specifically the bacteria, but not the fungi. These findings highlight that warming impacts are C pool and microbial taxa dependent and demonstrate interactive effects of warming and atmospheric CO2 on soil C.[Abstract] [Full Text] [Related] [New Search]