These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anionic Lanthanide Metal-Organic Frameworks: Selective Separation of Cationic Dyes, Solvatochromic Behavior, and Luminescent Sensing of Co(II) Ion.
    Author: Cui Z, Zhang X, Liu S, Zhou L, Li W, Zhang J.
    Journal: Inorg Chem; 2018 Sep 17; 57(18):11463-11473. PubMed ID: 30160113.
    Abstract:
    Four new microporous isostructural anionic lanthanide metal-organic frameworks (Ln-MOFs), [(CH3)2NH2]1.5[Ln1.5(TATAT)(H2O)4.5]· x(solvent) {Ln = Tb, Eu, Dy, and Gd; H6TATAT = 5,5',5″-(1,3,5-triazine-2,4,6-triyl)tris(azanediyl)triisophthalate}, were successfully constructed. The Ln-MOFs are three-dimensional (3D) anionic frameworks and have two sizes of square channels (8.9 × 8.9 Å and 4.3 × 4.3 Å) with a Lewis basic nitrogen-decorated pore environment. The 3D frameworks of Ln-MOFs can be simplified as (4,6)-connected she networks. Because of the anionic framework properties, Ln-MOFs can efficiently select and separate cationic dyes in the presence of anionic or neutral dyes of similar sizes. The adsorption amounts of methylene blue for Tb-MOF, Eu-MOF, Dy-MOF, and Gd-MOF are 147, 141, 133, and 143 mg g-1, respectively. Moreover, Tb-MOF and Eu-MOF allow easy detection and identification of ethanol, acetonitrile, and diethyl ether through solvatochromism. Diethyl ether vapor also rapidly changes the colors of Tb-MOF and Eu-MOF. The photoluminescence experiments show that the absolute quantum yields of Tb-MOF (upon excitation at 341 nm), Eu-MOF (upon excitation at 396 nm), Dy-MOF (upon excitation at 341 nm), and Gd-MOF (upon excitation at 370 nm) are 32.5%, 11.0%, 2.1%, and 7.1%, respectively. In addition, Tb-MOF can detect Co2+ ion with high selectivity and quenching efficiency of 87%.
    [Abstract] [Full Text] [Related] [New Search]