These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of oxidative processes in the cytotoxicity of substituted 1,4-naphthoquinones in isolated hepatocytes.
    Author: Ross D, Thor H, Threadgill MD, Sandy MS, Smith MT, Moldéus P, Orrenius S.
    Journal: Arch Biochem Biophys; 1986 Aug 01; 248(2):460-6. PubMed ID: 3017211.
    Abstract:
    In order to clarify the role of oxidative processes in cytotoxicity we have studied the metabolism and toxicity of 2-methyl-1,4-naphthoquinone (menadione) and its 2,3 dimethyl (DMNQ) and 2,3 diethyl (DENQ) analogs in isolated rat hepatocytes. The two analogs, unlike menadione, cannot alkylate nucleophiles directly and were considerably less toxic than menadione. This decreased toxicity was consistent with the inability of DMNQ and DENQ to alkylate but we also found them to undergo lower rates of redox cycling in hepatocytes and a higher ratio of two electron as opposed to one electron reduction relative to menadione. Thus, facile analysis of the respective roles of alkylation and oxidation in cytotoxicity was not possible using these compounds. In hepatocytes pretreated with bischloroethyl-nitrosourea (BCNU) to inhibit glutathione reductase, all three naphthoquinones caused a potentiation of reduced glutathione (GSH) removal/oxidized glutathione (GSSG) generation and cytotoxicity relative to that observed in control cells. These data show that inhibition of hepatocyte glutathione reductase by BCNU results in enhanced naphthoquinone-induced oxidative challenge and subsequent cellular toxicity. That DMNQ and DENQ are cytotoxic, albeit at high concentrations, and that this cytotoxicity is potentiated by BCNU pretreatment suggest that oxidative processes alone can be a determinant of cytotoxicity.
    [Abstract] [Full Text] [Related] [New Search]