These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Responses of forest ecosystems to increasing N deposition in China: A critical review. Author: Tian D, Du E, Jiang L, Ma S, Zeng W, Zou A, Feng C, Xu L, Xing A, Wang W, Zheng C, Ji C, Shen H, Fang J. Journal: Environ Pollut; 2018 Dec; 243(Pt A):75-86. PubMed ID: 30172126. Abstract: China has been experiencing a rapid increase in nitrogen (N) deposition due to intensified anthropogenic N emissions since the late 1970s. By synthesizing experimental and observational data taken from literature, we reviewed the responses of China's forests to increasing N deposition over time, with a focus on soil biogeochemical properties and acidification, plant nutrient stoichiometry, understory biodiversity, forest growth, and carbon (C) sequestration. Nitrogen deposition generally increased soil N availability and soil N leaching and decreased soil pH in China's forests. Consequently, microbial biomass C and microbial biomass N were both decreased, especially in subtropical forests. Nitrogen deposition increased the leaf N concentration and phosphorus resorption efficiency, which might induce nutrient imbalances in the forest ecosystems. Although experimental N addition might not affect plant species richness in the overstorey, it did significantly alter species composition of understory plants. Increased N stimulated tree growth in temperate forests, but this effect was weak in subtropical and tropical forests. Soil respiration in temperate forests was non-linearly responsive to N additions, with an increase at dosages of <60 kg N ha-1 yr-1 and a decrease at dosages of >60 kg N ha-1 yr-1. However, it was consistently decreased by increased N inputs in subtropical and tropical forests. In light of future trends in the composition (e.g., reduced N vs. oxidized N) and the loads of N deposition in China, further research on the effects of N deposition on forest ecosystems will have critical implications for the management strategies of China's forests.[Abstract] [Full Text] [Related] [New Search]