These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Presence of a low-affinity nucleotide binding site on the (K+ + H+)-ATPase phosphoenzyme. Author: Helmich-de Jong ML, van Emst-de Vries SE, Swarts HG, Schuurmans Stekhoven FM, de Pont JJ. Journal: Biochim Biophys Acta; 1986 Sep 11; 860(3):641-9. PubMed ID: 3017426. Abstract: The effects of Mg2+ and nucleotides on the dephosphorylation process of the (K+ + H+)-ATPase phosphoenzyme have been studied. Phosphorylation with [gamma-32P]ATP is stopped either by addition of non-radioactive ATP or by complexing of Mg2+ with EDTA. The dephosphorylation process is slow and monoexponential when dephosphorylation is initiated with ATP. When phosphorylation is stopped by complexing of Mg2+ the dephosphorylation process is fast and biexponential. The discrepancy could be explained by a nucleotide mediated inhibition of the dephosphorylation process. The I0.5 for ATP for this inhibition is 0.1 mM and that for ADP is 0.7 mM, suggesting that a low-affinity binding site is involved. When Mg2+ is present in millimolar concentrations in addition to the nucleotides the dephosphorylation process is enhanced. Evidence has been obtained that Mg2+ acts through lowering the affinity for ATP. In contrast to K+, Mg2+ does not stimulate dephosphorylation in the absence of nucleotides. Mg2+ and nucleotides show the same interaction in the dephosphorylation process of a phosphoenzyme generated from inorganic phosphate. These findings suggest the presence of a low-affinity nucleotide binding site on the phosphoenzyme, as is found in the (Na+ + K+)-ATPase phosphoenzyme. This low-affinity binding site may function as a feed-back mechanism in proton transport.[Abstract] [Full Text] [Related] [New Search]