These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contrast-Enhanced CT with Knowledge-Based Iterative Model Reconstruction for the Evaluation of Parotid Gland Tumors: A Feasibility Study.
    Author: Park CJ, Kim KW, Lee HJ, Kim MJ, Kim J.
    Journal: Korean J Radiol; 2018; 19(5):957-964. PubMed ID: 30174486.
    Abstract:
    OBJECTIVE: The purpose of this study was to determine the diagnostic utility of low-dose CT with knowledge-based iterative model reconstruction (IMR) for the evaluation of parotid gland tumors. MATERIALS AND METHODS: This prospective study included 42 consecutive patients who had undergone low-dose contrast-enhanced CT for the evaluation of suspected parotid gland tumors. Prior or subsequent non-low-dose CT scans within 12 months were available in 10 of the participants. Background noise (BN), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were compared between non-low-dose CT images and images generated using filtered back projection (FBP), hybrid iterative reconstruction (iDose4; Philips Healthcare), and knowledge-based IMR. Subjective image quality was rated by two radiologists using five-point grading scales to assess the overall image quality, delineation of lesion contour, image sharpness, and noise. RESULTS: With the IMR algorithm, background noise (IMR, 4.24 ± 3.77; iDose4, 8.77 ± 3.85; FBP, 11.73 ± 4.06; p = 0.037 [IMR vs. iDose4] and p < 0.001 [IMR vs. FBP]) was significantly lower and SNR (IMR, 23.93 ± 7.49; iDose4, 10.20 ± 3.29; FBP, 7.33 ± 2.03; p = 0.011 [IMR vs. iDose4] and p < 0.001 [IMR vs. FBP]) was significantly higher compared with the other two algorithms. The CNR was also significantly higher with the IMR compared with the FBP (25.76 ± 11.88 vs. 9.02 ± 3.18, p < 0.001). There was no significant difference in BN, SNR, and CNR between low-dose CT with the IMR algorithm and non-low-dose CT. Subjective image analysis revealed that IMR-generated low-dose CT images showed significantly better overall image quality and delineation of lesion contour with lesser noise, compared with those generated using FBP by both reviewers 1 and 2 (4 vs. 3; 4 vs. 3; and 3-4 vs. 2; p < 0.05 for all pairs), although there was no significant difference in subjective image quality scores between IMR-generated low-dose CT and non-low-dose CT images. CONCLUSION: Iterative model reconstruction-generated low-dose CT is an alternative to standard non-low-dose CT without significantly affecting image quality for the evaluation of parotid gland tumors.
    [Abstract] [Full Text] [Related] [New Search]