These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Evoked Potentials Investigations of Deficit Versus Nondeficit Schizophrenia: EEG-MEG Preliminary Data.
    Author: Boutros NN, Gjini K, Wang F, Bowyer SM.
    Journal: Clin EEG Neurosci; 2019 Mar; 50(2):75-87. PubMed ID: 30175598.
    Abstract:
    Heterogeneity of schizophrenia is a major obstacle toward understanding the disorder. One likely subtype is the deficit syndrome (DS) where patients suffer from predominantly negative symptoms. This study investigated the evoked responses and the evoked magnetic fields to identify the neurophysiological deviations associated with the DS. Ten subjects were recruited for each group (Control, DS, and Nondeficit schizophrenia [NDS]). Subjects underwent magnetoencephalography (MEG) and electroencephalography (EEG) testing while listening to an oddball paradigm to generate the P300 as well as a paired click paradigm to generate the mid-latency auditory-evoked responses (MLAER) in a sensory gating paradigm. MEG-coherence source imaging (CSI) during P300 task revealed a significantly higher average coherence value in DS than NDS subjects in the gamma band (30-80 Hz), when listening to standard stimuli but only NDS subjects had a higher average coherence level in the gamma band than controls when listening to the novel sounds. P50, N100, and P3a ERP amplitudes (EEG analysis) were significantly decreased in NDS compared with DS subjects. The data suggest that the deviations in the 2 patient groups are qualitatively different. Deviances in NDS patients suggest difficulty in both early (as in the gating paradigm), as well as later top-down processes (P300 paradigm). The main deviation in the DS group was an exaggerated responsiveness to ongoing irrelevant stimuli detected by EEG whereas NDS subjects had an exaggerated response to novelty.
    [Abstract] [Full Text] [Related] [New Search]