These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Compound and heterozygous mutations of DSG2 identified by Whole Exome Sequencing in arrhythmogenic right ventricular cardiomyopathy/dysplasia with ventricular tachycardia. Author: Lin Y, Huang J, Zhao T, He S, Huang Z, Chen X, Fei H, Luo H, Liu H, Wu S, Lin X. Journal: J Electrocardiol; 2018; 51(5):837-843. PubMed ID: 30177324. Abstract: BACKGROUNDS: This study was designed to identify the pathogenic mutations in two Chinese families of arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) using the Whole Exome Sequencing (WES). METHODS AND RESULTS: The proband 1 (Family 1, II:1) and proband 2 (Family 2, II:1) underwent the WES of DNA from peripheral blood. The genes susceptible to arrhythmias and cardiomyopathies were analyzed and both the probands carried the same exonic mutation of DSG2 p.F531C (NM_001943, exon 11: c.T1592G). The proband 1 also carried the splicing mutation of DSG2 (NM_001943: exon 4:c.217-1G>T), and proband 2 carried the intronic mutation of DSG2 (NM_001943: exon 6: c.524-3C>G) that potentially influenced the splicing function predicted by Human Splicing Finder. The compound heterozygous mutations of the two probands inherited from their paternal and maternal side, respectively. The carriers with DSG2 p.F531C showed early abnormal electrocardiograms, characterized as the subclinical phenotype of ARVC/D. CONCLUSIONS: The DSG2 p.F531C was the main reason for ARVC/D. More severe phenotypes of ARVC/D occurred when coexisting with 217-1G>T or 524-3C>G mutation that potentially affecting the splicing function, as a compound heterozygous recessive inheritance.[Abstract] [Full Text] [Related] [New Search]