These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of magnesium but not calcium transport by phorbol ester.
    Author: Grubbs RD, Maguire ME.
    Journal: J Biol Chem; 1986 Sep 25; 261(27):12550-4. PubMed ID: 3017980.
    Abstract:
    Phorbol esters in the presence of Ca2+ apparently mimic diacylglycerol in activating protein kinase C. Resulting phosphorylations alter multiple cellular processes including inhibition of the action of Ca2+-mobilizing agonists. In contrast to this inhibition of Ca2+ mobilization, addition of 4 beta-phorbol 12-myristate 13-acetate (PMA) to murine S49 lymphoma cells stimulated Mg2+ influx severalfold without any detectable alteration of Mg2+ efflux or of Ca2+ influx or efflux. Stimulation of Mg2+ influx did not require extracellular Ca2+, was half-maximal at 10 nM PMA, and was characterized by a marked increase in the Vmax of Mg2+ influx without change in the Ka for Mg2+. Stimulation of Mg2+ influx was not mimicked by 4 alpha-phorbol didecanoate, which does not activate protein kinase C and was not the result of Na+/H+ exchange activity. The effect of PMA on Mg2+ influx was inhibited by the beta-adrenergic agonist (-)-isoproterenol, which we have previously shown to inhibit Mg2+ influx by a non-cyclic AMP-dependent mechanism (Maguire, M. E., and Erdos, J. J. (1980) J. Biol. Chem. 255, 1030-1035). Forskolin, a direct activator of adenylate cyclase, also inhibited PMA stimulation of Mg2+ influx, suggesting the presence of both cyclic AMP-dependent and -independent influences on Mg2+ influx. We have also previously demonstrated that Mg2+ influx occurs solely into a small subcytoplasmic pool (Grubbs, R. D., Collins, S. D., and Maguire, M. E. (1984) J. Biol. Chem. 259, 12184-12192). PMA did not alter this compartmentation; rather, it almost doubled the content of this cytosolic Mg2+ pool. These data indicate that, in addition to phorbol ester modulation of intracellular Ca2+ mobilization, substantial changes in Mg2+ flux and content occur. They further demonstrate that Mg2+ influx is regulated by a variety of stimuli. It seems likely that such alterations in Mg2+ flux and content would have physiological consequences.
    [Abstract] [Full Text] [Related] [New Search]