These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance. Author: Naseem H, Ahsan M, Shahid MA, Khan N. Journal: J Basic Microbiol; 2018 Dec; 58(12):1009-1022. PubMed ID: 30183106. Abstract: Drought stress not only effect the population and activities of microorganisms inhabiting the rhizosphere but also various physiological and biochemical process in plants that is, photosynthesis, respiration, translocation, uptake of ions, carbohydrates, and nutrient metabolism. Plant growth promoting rhizobacteria (PGPR) and their exopolysaccharides (EPS) showed profound effects on plant growth and drought tolerance. Reactions of bacteria to drought stress at various organizational levels are different which depends on intensity of stress, duration, species, and growth stage. PGPR could be effectively utilized in developing strategies to facilitate water conservation strategies of plants. They have the ability to improve plant growth directly by enhancing level of phytohormones, siderophore, biofilm, and exopolysaccharides production and by increasing the nutrient availability in the rhizosphere or indirectly by protecting plants from pathogen attack. EPS producing bacteria are capable to maintain higher soil moisture content and growth of plants even under severe dried sandy soils. The evidence of survival of rhizobacteria under low moisture content obtained from the fact of rhizobacterial occurrence in the soil of desert and effective nodule formation in desert soil. Beside this, EPS produced by PGPR form rhizosheath around the roots and thus protect the plant roots from desiccation for a longer period of time. Important role exhibited by exopolysaccharides includes, protection from desiccation, microbial aggregation, plant-microbe interaction, surface attachment, bioremediation and its use by many industries for stabilizing, thickening, coagulating, gelling, suspending and for film forming. Plants inoculated with EPS-producing bacteria showed higher accumulation of proline, sugars, and free amino acids under water deficit stress. Biofilms formed by the PGPR around the roots are made up of bacterial populations or bacterial communities that encased inside the polymeric extracellular matrix formed by bacteria itself, they adhered to the external surfaces that contain sufficient moisture. It is concluded that the application of PGPR in combination with their EPS is a promising measure to combat drought stress thus, increasing global food security.[Abstract] [Full Text] [Related] [New Search]