These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Determination of Ionic Hydration Free Energies with Grand Canonical Monte Carlo/Molecular Dynamics Simulations in Explicit Water. Author: Sun D, Lakkaraju SK, Jo S, MacKerell AD. Journal: J Chem Theory Comput; 2018 Oct 09; 14(10):5290-5302. PubMed ID: 30183291. Abstract: Grand canonical Monte Carlo (GCMC) simulations of ionic solutions with explicit solvent models are known to be challenging. One challenge arises from the treatment of long-range electrostatics and finite-box size in Monte Carlo simulations when periodic boundary condition and Ewald summation methods are used. Another challenge is that constant excess chemical potential GCMC simulations for charged solutes suffer from inadequate insertion and deletion acceptance ratios. In this work, we address those problems by implementing an oscillating excess chemical potential GCMC algorithm with smooth particle mesh Ewald and finite-box-size corrections to treat the long-range electrostatics. The developed GCMC simulation program was combined with GROMACS to perform GCMC/MD simulations of ionic solutions individually containing Li+, Na+, K+, Rb+, Cs+, F-, Cl-, Br-, I-, Ca2+, and Mg2+, respectively. Our simulation results show that the combined GCMC/MD approach can approximate the ionic hydration free energies with proper treatment of long-range electrostatics. Our developed simulation approach can open up new avenues for simulating complex chemical and biomolecular systems and for drug discovery.[Abstract] [Full Text] [Related] [New Search]