These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Adaptive Image Enhancement Using Entropy-Based Subhistogram Equalization. Author: Zhuang L, Guan Y. Journal: Comput Intell Neurosci; 2018; 2018():3837275. PubMed ID: 30186315. Abstract: A novel image enhancement approach called entropy-based adaptive subhistogram equalization (EASHE) is put forward in this paper. The proposed algorithm divides the histogram of input image into four segments based on the entropy value of the histogram, and the dynamic range of each subhistogram is adjusted. A novel algorithm to adjust the probability density function of the gray level is proposed, which can adaptively control the degree of image enhancement. Furthermore, the final contrast-enhanced image is obtained by equalizing each subhistogram independently. The proposed algorithm is compared with some state-of-the-art HE-based algorithms. The quantitative results for a public image database named CVG-UGR-Database are statistically analyzed. The quantitative and visual assessments show that the proposed algorithm outperforms most of the existing contrast-enhancement algorithms. The proposed method can make the contrast of image more effectively enhanced as well as the mean brightness and details well preserved.[Abstract] [Full Text] [Related] [New Search]