These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Beneficial Role of Hydrogen Sulfide in Renal Ischemia Reperfusion Injury in Rats.
    Author: Choi EK, Park SH, Lim JA, Hong SW, Kwak KH, Park SS, Lim DG, Jung H.
    Journal: Yonsei Med J; 2018 Oct; 59(8):960-967. PubMed ID: 30187703.
    Abstract:
    PURPOSE: Hydrogen sulfide (H₂S) is an endogenous gaseous molecule with important physiological roles. It is synthesized from cysteine by cystathionine γ-lyase (CGL) and cystathionine β-synthase (CBS). The present study examined the benefits of exogenous H₂S on renal ischemia reperfusion (IR) injury, as well as the effects of CGL or CBS inhibition. Furthermore, we elucidated the mechanism underlying the action of H₂S in the kidneys. MATERIALS AND METHODS: Thirty male Sprague-Dawley rats were randomly assigned to five groups: a sham, renal IR control, sodium hydrosulfide (NaHS) treatment, H₂S donor, and CGL or CBS inhibitor administration group. Levels of blood urea nitrogen (BUN), serum creatinine (Cr), renal tissue malondialdehyde (MDA), and superoxide dismutase (SOD) were estimated. Histological changes, apoptosis, and expression of mitogen-activated protein kinase (MAPK) family members (extracellular signal-regulated kinase, c-Jun N-terminal kinase, and p38) were also evaluated. RESULTS: NaHS attenuated serum BUN and Cr levels, as well as histological damage caused by renal IR injury. Administration of NaHS also reduced oxidative stress as evident from decreased MDA, preserved SOD, and reduced apoptotic cells. Additionally, NaHS prevented renal IR-induced MAPK phosphorylation. The CGL or CBS group showed increased MAPK family activity; however, there was no significant difference in the IR control group. CONCLUSION: Exogenous H₂S can mitigate IR injury-led renal damage. The proposed beneficial effect of H₂S is, in part, because of the anti-oxidative stress associated with modulation of the MAPK signaling pathways.
    [Abstract] [Full Text] [Related] [New Search]