These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of apoptosis-related genes during interactions between oyster hemocytes and the alveolate parasite Perkinsus marinus. Author: Lau YT, Santos B, Barbosa M, Pales Espinosa E, Allam B. Journal: Fish Shellfish Immunol; 2018 Dec; 83():180-189. PubMed ID: 30195907. Abstract: The alveolate Perkinsus marinus is the most devastating parasite of the eastern oyster Crassostrea virginica. The parasite is readily phagocytosed by oyster hemocytes, but instead of intracellular killing and digestion, P. marinus can survive phagocytosis and divide in host cells. This intracellular parasitism is accompanied by a regulation of host cell apoptosis. This study was designed to gain a better understanding of the molecular mechanisms of apoptosis regulation in oyster hemocytes following exposure to P. marinus. Regulation of apoptosis-related genes in C. virginica, and apoptosis-regulatory genes in P. marinus, were investigated via qPCR to assess the possible pathways involved during these interactions. In vitro experiments were also carried out to evaluate the effect of chemical inhibitors of P. marinus antioxidant processes on hemocyte apoptosis. Results indicate the involvement of the mitochondrial pathway (Bcl-2, anamorsin) of apoptosis in C. virginica exposed to P. marinus. In parallel, the antioxidants peroxiredoxin and superoxide dismutase were regulated in P. marinus exposed to C. virginica hemocytes suggesting that apoptosis regulation in infected oysters may be mediated by anti-oxidative processes. Chemical inhibition of P. marinus superoxide dismutase resulted in a marked increase of reactive oxygen species production and apoptosis in infected hemocytes. The implication of oxygen-dependent apoptosis during P. marinus infection and disease development in C. virginica is discussed.[Abstract] [Full Text] [Related] [New Search]