These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Polyanionic-binding properties of the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin. A comparison with the glucocorticoid receptor. Author: Wilhelmsson A, Wikström AC, Poellinger L. Journal: J Biol Chem; 1986 Oct 15; 261(29):13456-63. PubMed ID: 3020033. Abstract: The interaction of the rat hepatic receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) with immobilized heparin (heparin-Sepharose) or DNA (DNA-cellulose) has been compared to the polyanionic-binding properties of the rat hepatic glucocorticoid receptor. Both the nonoccupied and in vitro occupied forms of the receptors interacted with heparin-Sepharose but with varying strength, as determined by ligand binding assays or an enzyme-linked immunosorbent assay based on a monoclonal antibody against the steroid- and DNA-binding Mr approximately 94,000 glucocorticoid receptor protein. In the absence of ligand, both the dioxin and glucocorticoid receptors eluted from heparin-Sepharose at 0.1-0.2 M KCl, in contrast to the in vitro occupied receptor forms which eluted at 0.3-0.4 M KCl. Following elution of the in vitro occupied dioxin receptor from heparin-Sepharose, it was efficiently retained on DNA-cellulose and eluted at an ionic strength of approximately 0.2 M KCl. In the presence of 20 mM sodium molybdate which is known to inhibit the activation of steroid hormone receptors to a DNA-binding form, both the dioxin and glucocorticoid receptors eluted at 0.1-0.2 M KCl from heparin-Sepharose. In analogy to what has previously been shown for the glucocorticoid receptor, sodium molybdate stabilized a large dioxin-receptor complex with a sedimentation coefficient, S20,w, of 9-10 S, a Stokes radius of approximately 7.5 nm, and a calculated Mr of 290,000-310,000. Limited proteolysis of both the dioxin and glucocorticoid receptors with trypsin which is known to eliminate the DNA-binding property of both receptor forms also resulted in a decreased strength in the interaction of both in vitro occupied receptors with heparin-Sepharose (elution at 0.1-0.2 M KCl). In line with these data, calf thymus DNA in solution competed for receptor binding to heparin-Sepharose. In conclusion, the chromatographic properties of the dioxin receptor on heparin-Sepharose are indistinguishable from those of the glucocorticoid receptor, and both receptors appear to be structurally and functionally closely related proteins.[Abstract] [Full Text] [Related] [New Search]