These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Global and Targeted miRNA Expression Profiling in Clear Cell Renal Cell Carcinoma Tissues Potentially Links miR-155-5p and miR-210-3p to both Tumorigenesis and Recurrence.
    Author: Zhang J, Ye Y, Chang DW, Lin SH, Huang M, Tannir NM, Matin S, Karam JA, Wood CG, Chen ZN, Wu X.
    Journal: Am J Pathol; 2018 Nov; 188(11):2487-2496. PubMed ID: 30201497.
    Abstract:
    About 30% of patients undergoing nephrectomy for renal cell carcinoma (RCC) experience disease recurrence. We profiled miRNAs dysregulated in clear-cell (cc) RCC tumor tissues and predictive of recurrence. The expression levels of 800 miRNAs were assessed in paired tumor and normal tissues from a discovery cohort of 18 ccRCC patients. miRNAs found to be differentially expressed were examined in a validation set of 205 patients, using real-time quantitative PCR. Tumor-normal data from 64 patients in The Cancer Genome Atlas were used for external validation. Twenty-eight miRNAs were consistently dysregulated in tumor tissues. On dichotomized analysis, patients with high levels of miR-155-5p and miR-210-3p displayed an increased risk for ccRCC recurrence (hazard ratio, 2.64; 95% CI, 1.49 to 4.70; P = 0.0009; and hazard ratio, 1.80; 95% CI, 1.04 to 3.12; P = 0.036, respectively) and a shorter median recurrence-free survival time than did patients with low levels [P < 0.01 (log rank test)]. A risk score was generated based on the expression levels of miR-155-5p and miR-210-3p, and the trend test was significant (P = 0.005). On pathway analysis, target genes regulated by miR-155-5p and miR-210-3p were mainly enriched in inflammation-related pathways. We identified and validated multiple miRNAs dysregulated in ccRCC tissues; miR-155-5p and miR-210-3p were predictive of ccRCC recurrence, pointing to potential utility as biomarkers and underlying biological mechanisms.
    [Abstract] [Full Text] [Related] [New Search]