These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ultrasound Elastography for Rapid, Real-time Detection of Localized Muscular Reaction in Malignant Hyperthermia-susceptible Pigs. Author: Johannsen S, Türkmeneli I, Isbary S, Roewer N, Schuster F. Journal: Anesthesiology; 2018 Nov; 129(5):989-999. PubMed ID: 30204593. Abstract: WHAT WE ALREADY KNOW ABOUT THIS TOPIC: WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: Halothane and caffeine induce excessive sarcoplasmic calcium liberation and skeletal muscle contracture in patients susceptible to malignant hyperthermia (MH) and are utilized for diagnosis in the in vitro contracture test. Intramuscular injection previously caused a marked local lactate increase in MH-susceptible but not in MH-nonsusceptible individuals in vivo. Using shear-wave elastography, this study evaluated localized changes in muscle stiffness after intramuscular injection of halothane and caffeine. METHODS: Microdialysis probes were placed into the gracilis muscle of 16 pigs (9 MH-susceptible and 7 MH-nonsusceptible). After local injection of either halothane or caffeine in different concentrations, changes of tissue elasticity surrounding the probe were examined by quantitative shear-wave elastography. Local lactate concentrations were analyzed spectrophotometrically. RESULTS: Ultrasound elastography detected a temporary increase in local muscle rigidity in MH-susceptible but not in MH-nonsusceptible pigs after 2.5 and 5 vol% halothane and after 10, 40, and 80 mM caffeine, whereas there were no differences in the control groups (median [interquartile range] for maximum effect after 5 vol% halothane: MH-susceptible: 97 [31 to 148] vs. MH-nonsusceptible: 5 [-6 to 18] kPa; P = 0.0006; maximum effect after 80 mM caffeine: 112 [64 to 174] vs. -3 [-6 to 35] kPa; P = 0.0002). These effects were seen rapidly within 5 min. Local lactate concentrations were higher in MH-susceptible versus nonsusceptible pigs after 1 and 2.5 vol% halothane and 10, 40, and 80 mM caffeine (2.5 vol% halothane: MH-susceptible: 2.8 [1.9 to 4.4] vs. MH-nonsusceptible: 0.6 [0.6 to 0.7] mmol/l; P < 0.0001; 80 mM caffeine: 5.2 [4.1 to 6.3] vs. 1.6 [1.2 to 2.4] mmol/l; P < 0.0001). After 10 vol% halothane, rigidity and lactate levels were increased in both MH-susceptible and MH-nonsusceptible animals. CONCLUSIONS: This pilot study revealed shear-wave elastography as a suitable technique for real-time detection of altered tissue elasticity in response to pharmacologic stimulation. By considering the variability of these results, further test protocol optimization is required before elastography could serve as a minimally invasive MH diagnostic test.[Abstract] [Full Text] [Related] [New Search]