These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Association Between the Deletion Allele of Ins/Del Polymorphism (Rs145204276) in the Promoter Region of GAS5 with the Risk of Atherosclerosis.
    Author: Shen Z, She Q.
    Journal: Cell Physiol Biochem; 2018; 49(4):1431-1443. PubMed ID: 30205366.
    Abstract:
    BACKGROUND/AIMS: LncRNA is a growth arrest-specific transcript 5 (GAS5) with tumor suppressor activities in some cancers, but its role in atherosclerosis is unclear. METHODS: Bioinformatics algorithm analysis was utilized to search the target of GAS5 and miR-21, followed by luciferase assay to confirm these targets. Real-time PCR and western-blot were utilized to verify the connection among GAS5, miR-21 and Programmed cell death 4 (PDCD4). MTT assay and flow cytometry analysis were performed to explore the mechanism of GAS5 in the regulation of atherosclerosis. RESULTS: GAS5 directly targets miR-21 and functions as a competing endogenous RNA to suppress miR-21 expression. We also observed that rs145204276 polymorphism, including INS/INS and DEL/DEL, on GAS5 promoter increased transcription activity of GAS5, but the presence of rs145204276 DEL/DEL allele significantly promoted the transcription of GAS5 promoter compared with rs145204276 INS/INS allele. PDCD4 was predicted as a direct target gene of miR-21 with a binding site on PDCD4 3'UTR. It was further confirmed by luciferase assay that miR-21 significantly reduced the luciferase activity of wild-type PDCD4 3'UTR but not that of mutant PDCD4 3'UTR. In addition, high glucose significantly inhibited the growth rate of EC genotyped as DEL/DEL or INS/ INS, and apparently promoted the apoptotic rate of either DEL/DEL or INS/INS genotype ECs. Furthermore, the effect of high glucose was stronger in the INS/INS group, while the expression of GAS5 was dramatically upregulated with the presence of GAS5 DEL/DEL, while GAS5 positively regulated PDCD4 expression via inhibiting miR-21 expression. GAS5 siRNA and miR-21 mimics significantly decreased GAS5 and PDCD4 expressions, and the inhibitory effects of GAS5 siRNA or miR-21 mimics on GAS5 and PDCD4 expressions in the INS/INS group was stronger. Moreover, GAS5 siRNA and miR-21 mimics remarkably triggered cells proliferation and suppressed cell apoptosis, and the inhibition effects of GAS5 siRNA or miR-21 mimics on either cell viability and apoptosis in the INS/INS group was stronger. In this study, we enrolled 1,306 subjects with or without atherosclerosis and found that the INS/DEL or DEL/DEL genotypes significantly decreased the risk of atherosclerosis compared with the ins/ins genotype (adjusted odds ratio: 0.74 and 0.40, respectively). CONCLUSION: In summary, rs145204276 was associated with the risk of atherosclerosis by affecting the proliferation and apoptosis of endothelial cells via regulating the GAS5/miR-21/PDCD4 signaling pathway.
    [Abstract] [Full Text] [Related] [New Search]