These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aerobic and anaerobic reduction of nitrated pyrenes in vitro. Author: Djurić Z, Potter DW, Heflich RH, Beland FA. Journal: Chem Biol Interact; 1986 Oct 01; 59(3):309-24. PubMed ID: 3021349. Abstract: Nitrated pyrenes are mutagenic and tumorigenic environmental pollutants that are activated to DNA-binding derivatives via nitroreduction. We have investigated the enzymatic nitroreduction of 1-nitropyrene, 1,3-, 1,6- and 1,8-dinitropyrene to determine if differences in the extent of nitroreduction may help explain differences in their biological potencies. Each nitrated pyrene was incubated aerobically and anaerobically with 105,000 X g supernatant (S105) from Salmonella typhimurium TA98 and the nitroreductase-deficient strain, TA98NR, and with cytosol and microsomes from rat and human liver. Under anaerobic conditions, 1-nitropyrene and 1,3-dinitropyrene were reduced by TA98 S105 to a lesser extent than 1,6- and 1,8-dinitropyrene. The extent of 1,6- and 1,8-dinitropyrene metabolism was not altered relative to TA98 when using TA98NR S105, but the nitroreduction of 1-nitropyrene and 1,3-dinitropyrene was decreased. Both rat and human liver cytosol and microsomes reduced 1,6- and 1,8-dinitropyrene to greater extents than 1-nitropyrene and 1,3-dinitropyrene. Under aerobic conditions rat and human liver cytosols were similar to TA98 S105 in that aminopyrene decreased while nitrosopyrene formation increased. By comparison, oxygen decreased the microsomal formation of both nitrosopyrenes and aminopyrenes. The reduction of succinoylated cytochrome c was measured during the hepatic metabolism of nitro- and nitrosopyrenes under aerobic conditions. The data indicated that reduced nitro- and nitrosopyrene intermediates were directly reducing succinoylated cytochrome c and that the assay could be used as a measure of aerobic nitroreduction. These studies demonstrate that 1,6- and 1,8-dinitropyrene are reduced to a greater extent than 1-nitropyrene and 1,3-dinitropyrene, which corresponds to their relative biological potencies as mutagens and carcinogens. Furthermore, although more extensive nitroreduction is detected under anaerobic conditions, the nitroreduction that occurs aerobically may be important for the mutagenic and tumorigenic properties of these compounds.[Abstract] [Full Text] [Related] [New Search]