These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A catalytic cleavage strategy for fluorometric determination of Hg(II) based on the use of a Mg(II)-dependent split DNAzyme and hairpins conjugated to gold nanoparticles. Author: Yun W, Li F, Liu X, Li N, Chen L, Yang L. Journal: Mikrochim Acta; 2018 Sep 14; 185(10):457. PubMed ID: 30218159. Abstract: A catalytic cleavage strategy was developed for the fluorometric determination of Hg(II). The method is based on the use of a Mg(II)-dependent split DNAzyme. Fluorophore labeled hairpins were conjugated to gold nanoparticles (AuNPs) upon which fluorescence is quenched. Thymine-Hg(II)-thymine (T-Hg(II)-T) interaction causes the two DNA sequences to form an entire enzyme-strand DNA (E-DNA). The E-DNA bind to the hairpins on the AuNPs to form a Mg(II)-dependent DNAzyme structure. The circular cleavage of hairpins results in a signal amplification and in the recovery of fluorescence. The assay has a limit of detection (LOD) as low as 80 pM of Hg(II). This LOD is comparable to those obtained with other amplification strategies. The method was successfully applied to the determination of Hg(II) in Chinese herbs (Atractylodes macrocephala Koidz). Graphical abstract Schematic of a catalytic cleavage strategy based on Mg(II)-dependent split DNAzyme for fluorometric determination of Hg(II).[Abstract] [Full Text] [Related] [New Search]