These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of epidermal growth factor on the syntheses of DNA and polyamine in isoproterenol-stimulated murine parotid gland.
    Author: Inoue H, Kikuchi K, Nishino M.
    Journal: J Biochem; 1986 Sep; 100(3):605-13. PubMed ID: 3023313.
    Abstract:
    The effects of epidermal growth factor (EGF) on isoproterenol (IPR)-stimulated DNA synthesis and the activities of the rate limiting enzymes of polyamine synthesis (ornithine and S-adenosylmethionine decarboxylases) in parotid glands were investigated in vitro in cultured rat parotid explants and in vivo in submandibulectomized mice (mice after bilateral removal of the submandibular and sublingual glands). When the explants were cultured on siliconized lens paper floating on chemically defined synthetic medium, IPR caused the increases of both tissue cAMP level and the two decarboxylase activities in the prereplicative period and the stimulation of DNA synthesis with similar time courses to those observed in vivo. Dibutyryl cyclic AMP (DBcAMP) also increased the enzyme activities, but not DNA synthesis. EGF (1-2 ng/ml) had little effect on the IPR- and DBcAMP-dependent increases of amylase secretion and the enzyme activities, but it markedly enhanced IPR-stimulated DNA synthesis. Moreover, increase in DNA synthesis by DBcAMP was clearly observed in the presence of EGF when the explants were treated with this nucleotide analogue only during the early prereplicative period. In in vivo experiments, IPR-dependent increase in DNA synthesis was less in submandibulectomized mice than in intact animals. This decreased response to IPR of DNA synthesis was completely reversed by administration of EGF, though EGF alone did not induce either the enzymes or DNA synthesis. In submandibulectomized mice, although increases in the enzyme activities 8 h after injection of IPR were lower and they were significantly reversed by EGF, the activities at 12 h and the changes in polyamine levels at 8 and 12 h were almost the same as those in intact mice and were not affected by EGF treatment. These results obtained in vitro and in vivo suggest that EGF participates in the maximal response of IPR-dependent DNA synthesis but is not involved in the change of polyamine synthesis induced by IPR in murine parotid glands.
    [Abstract] [Full Text] [Related] [New Search]