These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase. Author: Lukat GS, Goff HM. Journal: J Biol Chem; 1986 Dec 15; 261(35):16528-34. PubMed ID: 3023353. Abstract: The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin.[Abstract] [Full Text] [Related] [New Search]