These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Silk genes and silk gene expression in the spider Tengella perfuga (Zoropsidae), including a potential cribellar spidroin (CrSp).
    Author: Correa-Garhwal SM, Chaw RC, Clarke TH, Alaniz LG, Chan FS, Alfaro RE, Hayashi CY.
    Journal: PLoS One; 2018; 13(9):e0203563. PubMed ID: 30235223.
    Abstract:
    Most spiders spin multiple types of silk, including silks for reproduction, prey capture, and draglines. Spiders are a megadiverse group and the majority of spider silks remain uncharacterized. For example, nothing is known about the silk molecules of Tengella perfuga, a spider that spins sheet webs lined with cribellar silk. Cribellar silk is a type of adhesive capture thread composed of numerous fibrils that originate from a specialized plate-like spinning organ called the cribellum. The predominant components of spider silks are spidroins, members of a protein family synthesized in silk glands. Here, we use silk gland RNA-Seq and cDNA libraries to infer T. perfuga silks at the protein level. We show that T. perfuga spiders express 13 silk transcripts representing at least five categories of spider silk proteins (spidroins). One category is a candidate for cribellar silk and is thus named cribellar spidroin (CrSp). Studies of ontogenetic changes in web construction and spigot morphology in T. perfuga have documented that after sexual maturation, T. perfuga females continue to make capture webs but males halt web maintenance and cease spinning cribellar silk. Consistent with these observations, our candidate CrSp was expressed only in females. The other four spidroin categories correspond to paralogs of aciniform, ampullate, pyriform, and tubuliform spidroins. These spidroins are associated with egg sac and web construction. Except for the tubuliform spidroin, the spidroins from T. perfuga contain novel combinations of amino acid sequence motifs that have not been observed before in these spidroin types. Characterization of T. perfuga silk genes, particularly CrSp, expand the diversity of the spidroin family and inspire new structure/function hypotheses.
    [Abstract] [Full Text] [Related] [New Search]